Salt shell fallout during the ash eruption at the Nakadake crater, Aso volcano, Japan: evidence of an underground hydrothermal system surrounding the erupting vent

نویسندگان

  • Hiroshi Shinohara
  • Nobuo Geshi
  • Akihiko Yokoo
  • Takahiro Ohkura
  • Akihiko Terada
چکیده

A hot and acid crater lake is located in the Nakadake crater, Aso volcano, Japan. The volume of water in the lake decreases with increasing activity, drying out prior to the magmatic eruptions. Salt-rich materials of various shapes were observed, falling from the volcanic plume during the active periods. In May 2011, salt flakes fell from the gas plume emitted from an intense fumarole when the acid crater lake was almost dry. The chemical composition of these salt flakes was similar to those of the salts formed by the drying of the crater lake waters, suggesting that they originated from the crater lake water. The salt flakes are likely formed by the drying up of the crater lake water droplets sprayed into the plume by the fumarolic gas jet. In late 2014, the crater lake dried completely, followed by the magmatic eruptions with continuous ash eruptions and intermittent Strombolian explosions. Spherical hollow salt shells were observed on several occasions during and shortly after the weak ash eruptions. The chemical composition of the salt shells was similar to the salts formed by the drying of the crater lake water. The hollow structure of the shells suggests that they were formed by the heating of hydrothermal solution droplets suspended by a mixed stream of gas and ash in the plume. The salt shells suggest the existence of a hydrothermal system beneath the crater floor, even during the course of magmatic eruptions. Instability of the magmatic–hydrothermal interface can cause phreatomagmatic explosions, which often occur at the end of the eruptive phase of this volcano.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Environmental hazards of £uoride in volcanic ash: a case study from Ruapehu volcano, New Zealand

The vent-hosted hydrothermal system of Ruapehu volcano is normally covered by a c. 10 million m3 acidic crater lake where volcanic gases accumulate. Through analysis of eruption observations, granulometry, mineralogy and chemistry of volcanic ash from the 1995^1996 Ruapehu eruptions we report on the varying influences on environmental hazards associated with the deposits. All measured parameter...

متن کامل

Lightning Associated with the August 18, 1992, Eruption of Crater Peak Vent, Mount Spurr Volcano, Alaska

The Alaska Volcano Observatory's lightning detection system detected and located 171 lightning strokes during the August 18, 1992, eruption of the Crater Peak vent of Mount Spurr volcano in Alaska. The strokes, predominantly intracloud, were detected during a 70-minute interval that began more than an hour into the eruption. All detected strokes were of positive polarity. The spatial distributi...

متن کامل

The Eyjafjöll explosive volcanic eruption from a microwave weather radar perspective

The sub-glacial Eyjafjöll explosive volcanic eruptions of April and May 2010 are analyzed and quantitatively interpreted by using ground-based weather radar data and the Volcanic Ash Radar Retrieval (VARR) technique. The Eyjafjöll eruptions have been continuously monitored by the Keflavík C-band weather radar, located at a distance of about 155 km from the volcano vent. Considering that the Eyj...

متن کامل

Hydrothermal Origin of Smectite in Volcanic Ash

Abstraet--Smectite and fine-grained quartz were separated from 6 volcanic ash samples collected in Japan from Shinmoe-dake Volcano, southern Kyushu, and Mt. Usu Volcano, southern Hokkaido. Oxygen isotope ratios of smectite in the volcanic ash range from +6,9 to + 12.9 per mill (%o), which are comparable to the values of smectite (~lsO = +6.5 and +9.4%0) from currently active geothermal fields. ...

متن کامل

Using Himawari-8, estimation of SO2 cloud altitude at Aso volcano eruption, on October 8, 2016

It is vital to detect volcanic plumes as soon as possible for volcanic hazard mitigation such as aviation safety and the life of residents. Himawari-8, the Japan Meteorological Agency’s (JMA’s) geostationary meteorological satellite, has high spatial resolution and sixteen observation bands including the 8.6 μm band to detect sulfur dioxide (SO2). Therefore, Ash RGB composite images (RED: brigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018